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Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infec-
tion process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better under-
standing pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, tran-
scriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review
focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C.
neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian
host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology.

The facultative intracellular fungal pathogen Cryptococcus neo-
formans is the causative agent of cryptococcosis, a disease that

primarily affects individuals with impaired immunity, such as
those with advanced HIV infection (1, 2). C. neoformans is a ubiq-
uitous environmental fungus associated with both pigeon guano
and eucalyptus trees, and its environmental niche ranges from the
tropical to the temperate (3). C. neoformans infection is acquired
from the environment via inhalation, after which it forms a local
infection in the lungs. This infection may be cleared, may be con-
tained as a granuloma, or may disseminate from this initial site,
leading to pneumonia and/or meningoencephalitis, the latter be-
ing uniformly fatal if untreated. Despite the availability of antifun-
gal therapy, more than 650,000 people die each year from C. neo-
formans infection (1, 2, 4). The principal virulence factors of C.
neoformans are a polysaccharide capsule, melanin production (5,
6), the ability to grow at body temperature (7), and the secretion of
extracellular enzymes (7). These virulence factors confer a selec-
tive advantage to C. neoformans for both residing in the environ-
ment and in a mammalian host. Tightly controlled regulation
leads to expression of enzymes required for fungal survival and
host damage once inside its mammalian host (8).

Many enzymes contribute to the composite cryptococcal viru-
lence phenotype. Dissection of the pathogenic role of these en-
zymes will enhance our understanding of cryptococcal pathogenic
mechanisms and facilitate directed inhibitor development and/or
vaccine discovery. We have included a table summarizing basic
information regarding global C. neoformans enzymology (Table
1) and a schematic displaying localization of most of the high-
lighted enzymes discussed (Fig. 1). In this review, we discuss in
detail the most important virulence-associated enzymes (Table 2),
as well as additional target enzymes with potential for rational
antifungal drug design (Table 3). We examine this information in
the context of infection and analyze candidate target enzymes for
drug inhibition and vaccine discovery.

POLYSACCHARIDE CAPSULE

C. neoformans is the only fungal pathogen with a polysaccharide
capsule, an outermost polysaccharide structure located just out-
side the cell wall. The two major polysaccharide capsule constitu-
ents are glucuronoxylomannan (GXM) and glucuroxyloman-
nogalactan (GXMGal) (9–11). GXM is the major component of C.

neoformans, a compound of �-1,3-linked mannose residues with
xylosyl and glucuronyl side groups (12), whereas GXMGal is made
of �-1,6-linked galactose residues with xylose, mannose, and
glucuronic acid (13). The capsule also contains nonpolysaccha-
ride components, such as mannoprotein (MP) (10, 14, 15), al-
though these MP components may represent transient compo-
nents destined for cellular export.

The role of capsule in environmental growth is unknown, al-
though speculations have been made that the capsule protects the
fungus from desiccation or acts as a food source (16). During
mammalian infection, the capsule participates in resisting phago-
cytosis and modulating the immune response (17–21). Not only
protective against phagocytosis in both mammalian and lepi-
dopteran hosts (22, 23), the capsule also protects the fungus after
ingestion by serving as a free radical sink that can shield the cell
from oxidative bursts (24). Hence, while the capsule is not part of
the enzymatic microbial arsenal, the machinery responsible for
capsule synthesis and assembly does directly contribute to crypto-
coccal virulence. The primary structures of GXM and GXMGal
subunits have been defined, but the mechanisms of subunit as-
sembly into �106-Da branched structures have not (25, 26). The
degree of branching and conformation of polysaccharides imply
an elaborate assembly and regulatory enzymatic machinery (27).

The subunits of GXM and GXMGal are large glycans that re-
quire several glycosyltransferases for synthesis. Both xylosyltrans-
ferase and glucuronyltransferase activities are involved in capsular
polysaccharide biosynthesis (28–31). A xylosyltransferase, Cxt1,
was the first glycosyltransferase identified with a defined role in
capsule synthesis (31). It is a large transmembrane protein with
�-1,2-xylosyltransferase activity (31), and deletion of the corre-
sponding gene (CXT1) decreased capsular �-1,2-xylose linkages
and fungal growth in the lung in a mouse model of infection (30).

Several acapsular mutants were obtained through identifica-
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TABLE 1 Described enzymes in Cryptococcus neoformans

Enzyme Function(s)a EC no. Reference(s)

Localized on capsule and/or cell wall
1,3-�-Glucan synthase Involved in �-glucan synthesis 2.4.1.34 135
Acid phosphatase Involved in fungal cell adhesion to host tissues, localized in lysosomes,

and related to virulence (Table 2)
3.1.3.2 106, 136, 137

Cas1 glycosyltransferase Participates in O-acetylation 2.4.1.X 138
Chitin deacetylase Involved in chitin metabolism 3.5.1.41 139
Chitin synthase Involved in chitin synthesis 2.4.1.16 140
Chitinase Involved in chitin degradation 3.2.1.14 141
Creatinine deaminase Involved in arginine and proline metabolism 3.5.4.21 142
Esterase lipase Catalyzes hydrolysis of fatty acids 3.1.1.3 136
GDP-mannose pyrophosphorylase Involved in GDP-mannose synthesis 2.7.7.13 143
Glucan 1,3-�-glucosidase Involved in glucan synthesis 3.2.1.58 16
Glucan 1,4-�-glucosidase Involved in glucan synthesis 3.2.1.3 16
Gmt1 GDP-mannose Transport of GDP-mannose 2.7.7.22 144
Lactonohydrolase Deficient strains show larger capsule size and facilitated immune

evasion
3.1.1.15 37

N-Acetylgalactosaminoglycan deacetylase Involved in polysaccharide metabolism 3.1.1.58 145
Phosphoaminase Involved in amino acid synthesis 136
Phosphomannomutase Involved in GDP-mannose synthesis 5.4.2.8 143
Phosphomannose isomerase Involved in GDP-mannose synthesis 5.3.1.8 143
Uph1 ATPase Required for vesicle acidification 146
Uxs1 decarboxylase Converts UDP-glucuronic acid to UDP-xylose 147
�-1,3-Glucanase Involved in glucan synthesis 3.2.1.59 16
�-Amylase Hydrolyzes alpha bonds of several polysaccharides and involved in cell

wall building
3.2.1.1 148

�-Glucosidase Breaks down disaccharides to glucose and starch and involved in cell
wall building

3.2.1.20 136

�-Mannosidase Involved in cell building through mannose metabolism 3.2.1.24 136
�-Mannosyltransferase Involved in polysaccharide metabolism 2.4.1.132 38, 149
�-Endoglucanase Involved in cell wall formation 3.2.1.4 148
�-Glucosidase Involved in cell wall formation 3.2.1.21 136
�-Glucuronidase Involved in cell wall formation, catalyzing breakdown of complex

carbohydrates
3.2.1.31 136

Secreted/released
Acyltransferase Involved in food acquisition 3.1.1.3 92
Alkaline phosphatase Involved in regulation of signaling cascades and several protein

structure and localized in endoplasmic reticulum
3.1.3.1 150

Aspartyl protease Involved in food acquisition 3.4.23.X 111
Cellulase Involved in polysaccharide degradation 3.2.1.4 151
DNase DNA degradation and related to virulence (Table 2) 3.1.21.1 79
Metalloprotease Catalyzes mechanism that involves a metal and related to virulence

(Table 2)
3.4.24.77 113, 152

Phospholipase B Similar to phospholipase C function, degrades cell membrane
components, supports fungal attachment to host cells, localized on
cell wall, and related to virulence (Table 2)

3.1.1.5 91, 92

Phospholipase C Degrades cell membrane components, supports fungal attachment to
host cells, and related to virulence (Table 2)

3.1.4.11 93

Protease Performs proteolysis interfering with host defense response 3.4.21.53 107, 108
S2P endopeptidase Performs proteolysis 3.4.24.85 153
Serine peptidase Performs proteolysis, coordinating several physiological functions 3.4.21.X 152
Superoxide dismutase Catalyzes dismutation of toxic superoxide, converting superoxide to

hydrogen peroxide and oxygen and related to virulence (Table 2)
1.15.1.1 83-85

Localized intracellularly
2-Methylcitrate synthase Converts acyl groups into alkyl groups on transfer 2.3.3.5 154
3-�-Hydroxysteroid 3-dehydrogenase Oxidizes a substrate by reduction reaction that transfers 1 or more

hydrides to electron acceptor
1.1.1.270 155

6-Phosphogluconate dehydrogenase Involved in production of ribulose 1.1.1.44 156, 157
Acetate kinase Catalyzes formation of acetyl-CoA 2.7.2.1 158
Aconitase Catalyzes isomerization of citrate to isocitrate and involved in

response to nitrosative stress
4.2.1.3 159

(Continued on following page)
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TABLE 1 (Continued)

Enzyme Function(s)a EC no. Reference(s)

Adenylyl cyclase Cac1 Converts ATP to cAMP 4.6.1.1 160
Alternative oxidase Part of electron transport chain in mitochondria 1.10.3.11 161
Aminopeptidase Catalyzes cleavage of amino acids from amino terminus of protein 3.4.11.21 137
C-9-methyltransferase Involved in glycosphingolipid pathway 2.1.1.129 127
Can2 carbonic anhydrase Responds directly to intracellular carbon oxide 4.2.1.1 162, 163
Casein kinase 1 Dephosphorylation of Hog1 under stress conditions 2.7.11.1 164
Catalase Protects cells from oxidative damage by reactive oxygen species 1.11.1.6 137, 150
Cytochrome c peroxidase Takes reduced equivalents from cytochrome c and reduces hydrogen

peroxide to water
1.11.1.5 165

Deacetylase Removes acetyl groups from lysine in proteins and is localized in cell
wall

3.5.1.108 166

Dolichyl-diphosphooligosaccharide-protein
glycotransferase

Participates in N-glycan biosynthesis 2.4.99.18 167

Ferrochelatase Catalyzes final step in heme biosynthesis from highly photoreactive
porphyrins

4.99.1.1 168

Flippase Participates in phospholipid translocation between membrane sides
and localized in cell wall

3.6.3.1 169, 170

Glucose-6-phosphate dehydrogenase Is in pentose phosphate pathway, maintaining the level of coenzyme
NADPH

1.1.1.49 171

Glucose-phosphate isomerase Catalyzes conversion of glucose-6-phosphate into fructose
6-phosphate

5.3.1.9 172

Glucosylceramide synthase Involved in glucosylceramide synthesis, localized in cell wall, and
related to virulence (Table 2)

2.4.1.80 127, 128

Glucuronyltransferase Involved in biosynthetic pathway of O-acetylated mannan 2.4.1.17 28
Glutathione peroxidase Protects cells from oxidative damage 1.11.1.9 173
Glyoxal oxidase Copper metalloenzyme that catalyzes oxidation of aldehydes to

corresponding carboxylic acids coupled to reduction of dioxygen to
H2O2

1.2.1.23 148

Homoisocitrate dehydrogenase Participates in lysine biosynthesis 1.1.1.87 115
Homoserine kinase Participates in glycine, serine, and threonine metabolism 2.7.1.39 174
Homoserine O-acetyltransferase Participates in methionine and sulfur metabolism 2.3.1.31 175
Hyaluronic synthase Involved in production of glycosaminoglycan at cell surface 2.4.1.212 176
Imidazole glycerol-phosphate dehydratase Participates in histidine biosynthesis 4.2.1.19 177
IMP dehydrogenase Participates in GTP biosynthesis 1.1.1.205 178
Inositol phosphotransferase 1 Involved in glycosphingolipid pathway 2.7.1.X 127
Inositol-phosphorylceramide synthase Involved in glycosphingolipid pathway 2.7.1.X 179
Ire1 kinase Involved in cellular response to unfolded proteins 2.7.11.1 180
Isocitrate lyase Catalyzes cleavage of isocitrate to succinate and glyoxylate 4.1.3.1 181
Laccase Polyphenol oxidase and copper-containing oxidase enzyme, localized

in cell wall, and related to virulence (Table 2)
1.10.3.2 45, 46, 50

Malate dehydrogenase Catalyzes oxidation of malate to oxaloacetate 1.1.1.37 182
Mannitol-1-phosphate 5-dehydrogenase Participates in fructose and mannose metabolism 1.1.1.17 183, 184
Mannose-1-phosphate guanylyltransferase
(GDP)

Participates in fructose and mannose metabolism 2.7.7.22 144

Mannosyl phosphorylinositol ceramide
synthase

Involved in glycosphingolipid pathway 2.4.X.X 127

Mannosyltransferase Participates in O-mannosylation of proteins and involved in cell wall
integrity and morphogenesis

2.4.1.109 185

Myristoyl-CoA: protein N-myristoyltransferase Catalyzes transfer of myristate from CoA to proteins 2.3.1.97 116
Pde1 phosphodiesterase Modulates cAMP 3.1.4.1 186
Phosphoglucomutase Participates in interconversion of glucose 1-phosphate and glucose

6-phosphate
5.4.2.2 172

Protein farnesyltransferase Participates in formation of farnesyl protein and diphosphate 2.5.1.58 187
Rho1 GTPase Involved in MAPK cascade 3.6.5.2 188
RNase III Binds and cleaves double-stranded RNA 3.1.26.3 189
Saccharopine dehydrogenase Participates in lysine metabolism 1.5.1.10 190
Sphingolipid methyltransferase 1 Participates in methylation of glucosylceramide 2.1.1.1 191
Sterol 14�-demethylase Involved in sterol metabolism 1.14.13.7 192
Sterol 24-C-methyltransferase Involved in sterol metabolism 1.15.1.1 193
Thiol peroxidase Reduces peroxides and inhibits hydrogen peroxide response 1.11.1.7 194

(Continued on following page)
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tion of rough colonies. This type of screen identified four genes
required for capsule formation: CAP10, CAP59, CAP60, and
CAP64. Although these genes are not essential, their mutation
does confer defects in growth and in mouse models of infection
(17, 32–35). Cells from these mutant strains lacked or produced

extremely reduced capsule, but these mutations did not corre-
late with enzymatic deficiency in UDP-glucose dehydrogenase,
UDP-glucuronate decarboxylase, UDP-glucuronyl:acceptor
transferase, UDP-xylosyl:acceptor transferase, or lipid-linked
oligosaccharide biosynthetic pathways. CAP10 is a putative xy-

TABLE 1 (Continued)

Enzyme Function(s)a EC no. Reference(s)

Thioredoxin reductase Catalyzes reduction of thioredoxin 1.8.1.9 195
Threonine synthase Participates in glycine, serine, and threonine metabolism 4.2.3.1 174
Thymidylate synthase Catalyzes conversion of dUMP to deoxythymidine monophosphate 2.1.1.45 196
Transaldolase Involved in pentose phosphate pathway 2.2.1.2 159
Trehalose-6-phosphate phosphatase Participates in starch and sucrose metabolism 3.1.3.12 197
Trehalose-6-phosphate synthase Participates in starch and sucrose metabolism 2.4.1.15 197
UDP-galactopyranose mutase Catalyzes conversion of UDP-D-galactopyranose in

UDP-D-galacto-1,4-furanose
5.4.99.9 198

UDP-glucose dehydrogenase Participates in conversion of UDP-glucose to UDP-glucuronate, and
formation of glycosaminoglycans

1.1.1.22 199

UDP-glucuronate decarboxylase Participates in nucleotide sugar metabolism 4.1.1.35 147
Urease Catalyzes hydrolysis of urea into carbono dioxide and ammonia and

related to virulence (Table 2)
3.5.1.5 74

Xylosylphosphotransferase Participates in O-glycosylation biosynthesis and related to virulence
(Table 2)

2.7.8.32 28, 31, 200

�8 desaturase Involved in glycosphingolipid pathway 1.14.19.4 127
a cAMP, cyclic AMP; MAPK, mitogen-activated protein kinase.

FIG 1 Enzymes are crucial for fungal pathogenesis and can alter the infection process. These enzymes are potential targets for new antifungal agents. (A) Some
pathogenesis-related enzymes are retained to be active inside the cell body, while others are secreted. Some, like laccase, are both retained and secreted. (B) Of
those released, some are secreted using traditional secretion systems, while others are included as cargo in extracellular vesicles.
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losyltransferase gene, and cap10� mutants show a pleiotropic
phenotype, which includes enlarged cell size, smaller extracel-
lular vesicles, and affected expression of some virulence factors
(36). CAP10 therefore is required for both capsule formation
and other aspects of fungal virulence.

Capsular lactonohydrolase also affects multiple capsule-re-
lated phenotypes (37). A strain lacking lactonohydrolase (lhc1�)
produced capsules with a larger size and altered branching, den-
sity, and solvation compared to the parental strain. These capsular
structure alterations increased virulence in murine infection (37).
Taken together, these results suggest that lactone may be involved
in cross-linking of the capsule.

�-1,3-Mannosyltransferase (encoded by CMT1) synthesizes
the mannose backbone of GXM and thus plays a crucial role in
capsule synthesis. However, �-1,3-mannosyltransferase activity is
more involved in in serotype A capsule biosynthesis than in the
serotype D C. neoformans (38, 39). Serotypes A and D represent
two of the four C. neoformans serotypes: C. neoformans var. neo-
formans (serotypes A and D) and C. neoformans var. gattii (sero-
types B and C), which can be distinguished according to their
growth differences on diagnostic media (40). The strain-specific
capsule synthesis differences, such as the role of CMT1, show the
importance of studying multiple strain backgrounds.

Much remains to be learned about the enzymatic machinery
involved in capsule synthesis, including enzyme localization and
kinetics. Detailed studies of capsule structure and the enzymatic
machinery involved are critical for a better understanding of the
function of the capsule production and regulation.

MELANIN SYNTHESIS

Melanin formation protects C. neoformans from oxidative damage
as well as from both heat and cold (41, 42). Melanin is synthesized

on 2,3- or 3,4-diphenol substrates by a phenoloxidase and accu-
mulates in the C. neoformans cell wall (43, 44). The melanin-syn-
thesizing enzyme has two classical laccase characteristics: a glyco-
sylated copper-containing protein with the ability to oxidize
diphenolic substrates and the ability to produce decarboxy dop-
achrome (45, 46). C. neoformans melanin synthesis occurs only in
the presence of exogenous dihydroxyphenols, since no known C.
neoformans endogenous substrate exists. Several diphenols can
serve as the substrates for pigment synthesis by C. neoformans
laccase (47), such as the substrates consisting of para- and ortho-
diphenols, monophenols, L-dopa, and esculin, indicating that the
enzyme has broad specificity and the ability to generate pigments
from different compounds (47–53). Iron increases laccase activ-
ity, but hydrogen peroxide has no effect on enzymatic activity,
despite the antioxidant properties of melanin (54).

The genes LAC1 and LAC2 encode two laccases, but a single
deletion in LAC1 is able to prevent melanin production (55–58).
Lac1 localizes in the cell wall, while Lac2 is cytoplasmic, but Lac2
can localize to the cell wall in the absence of Lac1 (55). lac1�
mutants are easily identified as white colonies when cultivated on
catecholamine-containing media (59). The lac1� mutant shows
decreased virulence in survival studies with rabbit infection (59),
corroborating the important role in the fungal virulence (5, 46). In
addition to its cell wall localization, laccase is packaged into extra-
cellular vesicles, a nontraditional mechanism of secretion, and can
therefore mediate damage away from the laccase-producing fun-
gal cell (Fig. 1).

Melanin is considered a powerful antioxidant, since it may
protect cryptococcal cells against oxygen- and nitrogen-derived
oxidants of the type made by host effector cells (5, 60–62). In
addition to its capacity to absorb free radical fluxes, melanin can
also contribute to acquired resistance against to the antifungals

TABLE 2 Enzymes related to the virulence in Cryptococcus neoformans

Enzyme Comment(s) Reference(s)

Acid phosphatase Deficient strains show affected virulence in mouse and Galleria mellonella models of infection 106
DNase Acts in degrading host DNA and supplies C. neoformans with nucleotides 79
Glucosylceramide synthase Required for virulence in murine model of infection 127, 128
Laccase Deficient strains show decreased virulence in survival studies with rabbit and mouse models of infection 59
Mannosyltransferase Required for virulence in murine model of infection 185
Metalloprotease Deficient strains unable to cross endothelium in in vitro model of human blood-brain barrier and is

required for invasion of central nervous system
113

Phospholipase B Required in invasion of host tissue and dissemination in murine model 95
Phospholipase C Shown to be important for several virulence phenotypes 101, 102
Superoxide dismutase Attenuated growth of deficient strains within macrophages 89
Urease Deficient strains less virulent than wild-type strain in mouse model of infection and is involved in

fungal escape from lung to cross blood-brain barrier
76

Xylosylphosphotransferase Deficient strains manifest reduced growth in lung tissue in mouse model of infection 30

TABLE 3 Possible target enzymes for rational antifungal drug design

Enzyme(s) Comment(s) Reference(s)

14�-Demethylase A critical enzyme in sterol assembly 119
Glucosylceramide synthase Glucosylceramide plays critical role in pathogenicity of C. neoformans 127, 128
Laccase Melanization aids virulence 60, 63, 64, 65
Myristoyltransferase Myristoylation inhibition is fatal for C. neoformans 116, 117
Phosphoribosylaminoimidazole carboxylase Mutants that cannot synthesize adenine have reduced virulence 114
Pyrophosphorylase and cytosine-specific permease Enzymes are basis of C. neoformans flucytosine resistance 201, 202
Sterol synthesis enzymes Sterol synthesis enzyme mutants show resistance to fluconazole and amphotericin 122-124
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amphotericin B and caspofungin, since nonmelanized cryptococ-
cal cells are more susceptible than melanized cells to amphotericin
B and caspofugin. Moreover, killing assays demonstrated that ad-
dition of melanin particles to amphotericin B or caspofungin sig-
nificantly reduces their toxicities against C. neoformans (63–65).
Thus, melanin and laccase are considered promising targets for
drugs against C. neoformans infection.

EXTRACELLULAR ENZYMES

As nature’s “recyclers,” environmental fungi secrete a number of
degradative enzymes to breakdown macromolecules and obtain
nutrients in the environment (7, 66–69). C. neoformans is no ex-
ception and releases a number of lipases, proteases, and DNases.
However, during the infection process, the same degradative en-
zymes contribute to virulence by destroying tissues, promoting
fungal survival, and interfering with effective immune responses.

Urease is almost universally expressed by C. neoformans iso-
lates. In the environment, C. neoformans is often isolated from
avian excreta (70, 71). To survive and grow on this medium, the
fungus must metabolize creatinine, xanthines, and uric acid. High
urease activity may benefit the fungus under these conditions (72–
74), as the enzyme catalyzes the hydrolysis of urea to ammonia
and carbamate. Urease is considered a major cryptococcal viru-
lence factor (75). A urease knockout (URE1) strain of C. neofor-
mans was significantly less virulent than the wild-type strain in a
mouse model of infection (76). Urease plays a role in fungal escape
from the lung to cross the blood-brain barrier but is not required
for fungal growth once inside the brain (76). Urease production
varies among clinical isolates; however, the vast majority (99.6%)
demonstrate some level of urease activity (74, 77, 78). Neverthe-
less, occasional urease-negative variants have been isolated in clin-
ical isolates (77), suggesting that this enzyme can be dispensable,
provided that there are compensatory virulence mechanisms.

Extracellular DNase is produced by C. neoformans in high
quantities (79). This DNase may degrade host DNA secreted by
neutrophils as part of the innate immune response (80) and addi-
tionally may supply C. neoformans with nucleotides. A survey of
several yeast species, including C. neoformans, suggests a correla-
tion between urease activity and extracellular DNase production
(79). DNase activity is stronger in clinical strains than in environ-
mental strains, further suggesting DNase may play a role as a vir-
ulence factor (81).

Superoxide dismutases (SODs) convert superoxide to hydro-
gen peroxide and oxygen (82). Two SODs have been described in
C. neoformans (83–88). SOD contributes to virulence of C. neofor-
mans by facilitating growth within macrophages (89), through a
mechanism that is likely to involve protection of the fungus
against superoxide generated by host immune response (2). In this
regard, melanin and SOD may stimulate complementary defenses
for the C. neoformans cells’ protection against oxidative damage.
SOD production is regulated by temperature, with increases in
expression at 37°C compared to 25°C. Thus, increased SOD pro-
duction at body temperatures may protect the fungus against ox-
idizing agents produced from host effector cells (90).

Phospholipases degrade cell membrane phospholipids in an
enzyme-dependent mechanism. C. neoformans extracellular su-
pernatants contain phospholipase B, phospholipase C, lysophos-
pholipase, and acyltransferase (91–93), and phospholipase activ-
ity supports fungal attachment to host cells (94). Phospholipase B
promotes fungal invasion of host tissue (95) and hydrolyzes phos-

pholipids in lung surfactant and the plasma membrane (92, 96).
Moreover, it contributes to fungal survival by maintaining cell
wall integrity (97) and provides nutrients that can be used as sole
carbon sources by C. neoformans during the infection (98, 99). As
described above, it has also been localized to the cell wall (97), and
its transport to the plasma membrane and cell wall is N-glycan
dependent (100). Phospholipase C is crucial for several virulence
phenotypes (melanin production, growth at 37°C, phospholipase
B secretion, and antifungal drug resistance) and is also involved in
homeostasis regulation, cell separation following cytokinesis, and
cell wall integrity (101, 102).

Phosphatases remove a phosphate group from their substrates
and play important roles in regulating protein structure and sig-
naling cascades (103, 104). A secreted acid phosphatase is involved
in fungal cell adhesion to host tissues, suggesting an important
role in establishing infection (105). Acid phosphatase is encoded
by the gene APH1 in C. neoformans. In both wax worm and mu-
rine models of cryptococcosis, aph1� strain-infected animals sur-
vived longer than those in the wild-type-infected model (106),
demonstrating the importance of this enzyme during infection.

Proteases break down proteins and are considered important
virulence factors, contributing to tissue invasion, colonization,
and alteration of the host defense response. Protease activity in C.
neoformans cultures has been reported by several investigators
(107–111). Proteases play important roles in host cell penetration
and virulence of C. neoformans (112). Recently, a metalloprotease
was identified by proteomic analyses of the extracellular proteins
from C. neoformans and found to be required for invasion of the
central nervous system in murine infection of C. neoformans
(113). Moreover, the metalloprotease knockout (mpr1�) strain
was unable to cross the endothelium in an in vitro model of the
human blood-brain barrier (113).

DRUG DESIGN AND RESISTANCE

Definition of enzymatic pathways can provide crucial targets for
antimicrobial drug design. One way to identify targets is to iden-
tify unique metabolic requirements for cryptococcal growth
and/or virulence. An example of this is the C. neoformans phos-
phoribosylaminoimidazole carboxylase gene (ADE2). Mutants
with mutations in this gene lack an enzyme required for adenine
synthesis and thus have reduced virulence compared to the wild-
type strain (114). This observation suggests potential for rational
drug design utilizing differences in adenine synthesis pathways
between host and pathogen (as first suggested in reference 7).
Several candidate enzymes in C. neoformans have been studied
regarding fungal amino acid synthesis (e.g., homocitrate synthase,
homoisocitrate dehydrogenase, �-aminoadipate reductase, sac-
charopine reductase, and saccharopine dehydrogenase) (115).
However, comparisons between C. neoformans var. neoformans
and C. neoformans var. gattii have shown that candidate targets do
not necessarily translate across Cryptococcus species. Saccharopine
reductase, an enzyme involved in lysine synthesis, was not de-
tected in C. neoformans var. gattii but was detected in C. neofor-
mans var. neoformans. This C. neoformans var. gattii strain was
able to grow even in the absence of lysine (115), indicating that
further research to identify enzymes essential across all Cryptococ-
cus species is required.

Another essential process for C. neoformans is protein myris-
toylation. C. neoformans myristoyltransferase catalyzes the trans-
fer of myristate from coenzyme A (CoA) to the amino-terminal
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glycine residue of a subset of cellular proteins, and this enzyme is
essential for C. neoformans viability (116, 117). N-Myristoyl pro-
teins and myristoylation inhibition by the myristic acid analog
4-oxatetradecanoic acid are crucial for this organism (118). Thus,
therapies directed at myristoylation may also be a possible target
for rational antifungal drug design.

In some cases, an antifungal target is well defined, but multiple
enzymes involved in target synthesis provide several inhibitory
strategies. Sterols and their synthetic pathways are major antifun-
gal targets in many fungi, but resistance leads to difficulties in
patient treatment. Fluconazole-resistant strains require a 10-fold-
higher drug concentration to inhibit sterol 14�-demethylation
(119), rendering the drug clinically unfeasible. The molecular ba-
sis for differential enzyme function has been identified in several
clinical C. neoformans strains (120). One documented flucona-
zole- and amphotericin-resistant C. neoformans patient isolate
showed reduced relative sterol content and a defect in �-8-isomer-
ase, depleted ergosterol, and accumulated aberrant �-8-double-
bonded ergosterol precursors (121, 122), suggesting the ability to
form membrane pores due to aggregation and formation of am-
photericin-ergosterol complexes. Another study evaluating flu-
conazole- and amphotericin-resistant isolates observed reduced
ergosterol content in the isolates, as well as reduced sensitivity of
P450 14�-demethylase to inhibition by fluconazole, and a defect
in sterol �8-�7 isomerase (123). Another C. neoformans strain
with defective sterol �8-�7 isomerase was discovered in an am-
photericin B-resistant isolate from an AIDS patient (124). These
mutations in sterol synthesis enzymes explain resistance evolution
and generate targets to fight it with. This information can also help
in rational drug design methodologies.

Identification of key virulence-related enzymes is yet another
route toward finding an effective drug target. Glycosphingolipids
are essential to regulate survival and/or replication of C. neofor-
mans in the phagolysosome, as well as in the extracellular environ-
ment of the host (125–127). Glucosylceramide plays critical role in
pathogenicity of C. neoformans, since glucosylceramide synthase
(Gcs1) is required for virulence in the murine model of infection
(128). gcs1� mutants corroborate the crucial role of the glycosph-
ingolipid synthesis in regulation of this considerable aspect of C.
neoformans virulence (127). Thus, the glycosphingolipid pathway
may also be a reasonable target for antifungal therapies.

Laccase has been considered a drug target in C. neoformans
because melanization is critical to virulence. Inhibition of fungal
melanization in murine infection using the herbicide glyphosate
prolonged average mouse survival. Glyphosate is an inhibitor of
both the shikimate acid pathway and L-dopa polymerization
(129). Thus, therapies directed at melanization may also be a po-
tential target for antifungal drug design.

Occasionally, a drug proven to work on one microbial patho-
gen will also be effective against another. This appears to be the
case with several viral medications. Drugs such as indinavir and
oseltamivir inhibit human immunodeficiency virus (HIV) pro-
tease or influenza virus neuraminidase, respectively, and demon-
strate the impact an enzymatic inhibitor can have in the clinic
(130, 131). The use of protease inhibitors has shown positive ef-
fects on C. neoformans and Candida albicans infections, where
drug treatment was associated with inhibition of fungal growth
and proliferation in vitro (132, 133). These are likely inhibiting the
fungal proteases, both cell associated and as part of the fungal
secretome.

CONCLUSION

Recent advances in genomics, proteomics, transcriptomics, and
mass spectrometry have facilitated the identification and charac-
terization of new fungal enzymes, including those specific to both
fungi and C. neoformans. These enzymes are required for many
important biological processes, including growth and infection.
The importance of the secretome in cryptococcal pathogenesis is
apparent from the fact that strain differences in secreted enzymes
correlate with their virulence (134). Nonetheless, important ques-
tions remain. Future research on cryptococcal enzymology will
not only identify new enzymes and their roles during infection but
also pinpoint enzymatic targets for the development of antifungal
agents.

ADDENDUM IN PROOF

There are, of course, many enzymes involved in signaling cas-
cades, most of which were not discussed in this review. One such
enzyme is vital to stress response in C. neoformans and other
pathogenic fungi and thus merits a well-deserved mention: the
calcium-dependent phosphatase calcineurin (W. J. Steinbach, J. L.
Reedy, R. A. Cramer, Jr., J. R. Perfect, J. Heitman, Nat Rev Micro-
biol 5:418 – 430, 2008). This enzyme is required for growth in a
mammalian host and therefore is necessary to cause disease (A.
Odom, S. Muir, E. Lim, D. L. Toffaletti, J. Perfect, J. Heitman,
EMBO J 16:2576 –2589, 1997). Studies utilizing calcineurin inhib-
itors for invasive disease in animal models have shown promising
results, and this work is now moving into translational stages
(D. P. Kontoyiannis, R. E. Lewis, B. D. Alexander, O. Lortholary,
F. Dromer, K. L. Gupta, G. T. John, R. del Busto, G. B. Klintmalm,
J. Somani, G. M. Lyon, K. Pursell, V. Stosor, P. Munoz, A. P.
Limaye, A. C. Kalil, T. L. Pruett, J. Garcia-Diaz, A. Humar, S.
Houston, A. A. House, D. Wray, S. Orloff, L. A. Dowdy, R. A.
Fisher, J. Heitman, N. D. Albert, M. M. Wagener, N. Singh, Anti-
microb Agents Chemother 52:735–738, 2008, http://dx.doi.org
/10.1128/AAC.00990-07). Other enzymes involved in stress re-
sponses may similarly be identified and targeted in the future.
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